Diagnostic Measures in Ridge Regression Model with AR(1) Errors under the Stochastic Linear Restrictions

Authors

  • A. R. Rasekh Department of Statistics, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Ahvaz, Islamic Republic of Iran
  • A. Zaherzadeh Zaherzadeh Department of Statistics, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Ahvaz, Islamic Republic of Iran
  • B. Babadi Department of Statistics, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Ahvaz, Islamic Republic of Iran
Abstract:

Outliers and influential observations have important effects on the regression analysis. The goal of this paper is to extend the mean-shift model for detecting outliers in case of ridge regression model in the presence of stochastic linear restrictions when the error terms follow by an autoregressive AR(1) process. Furthermore, extensions of measures for diagnosing influential observations are derived. A numerical example of a real data set is used to illustrate the findings. Finally, a simulation study is conducted to evaluate the performance of the proposed procedure and measures. Results of this study show the efficiency of the proposed mean-shift outlier model for the proposed model. Also, the study resulted in some findings about the behavior of suggested measures for the specified model. In fact, these measures are affected by the degree of collinearity and the size of autocorrelation. 

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A New Ridge Estimator in Linear Measurement Error Model with Stochastic Linear Restrictions

In this paper, we propose a new ridge-type estimator called the new mixed ridge estimator (NMRE) by unifying the sample and prior information in linear measurement error model with additional stochastic linear restrictions. The new estimator is a generalization of the mixed estimator (ME) and ridge estimator (RE). The performances of this new estimator and mixed ridge estimator (MRE) against th...

full text

Liu Estimates and Influence Analysis in Regression Models with Stochastic Linear Restrictions and AR (1) Errors

In the linear regression models with AR (1) error structure when collinearity exists, stochastic linear restrictions or modifications of biased estimators (including Liu estimators) can be used to reduce the estimated variance of the regression coefficients estimates. In this paper, the combination of the biased Liu estimator and stochastic linear restrictions estimator is considered to overcom...

full text

Detection of Outliers and Influential Observations in Linear Ridge Measurement Error Models with Stochastic Linear Restrictions

The aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. Based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. In addition, we derive the corrected score test statistic for outliers detection ba...

full text

detection of outliers and influential observations in linear ridge measurement error models with stochastic linear restrictions

the aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. in addition, we derive the corrected score test statistic for outliers detection ba...

full text

Preliminary test almost unbiased ridge estimator in a linear regression model with multivariate Student-t errors

In this paper, the preliminary test almost unbiased ridge estimators of the regression coefficients based on the conflicting Wald (W), Likelihood ratio (LR) and Lagrangian multiplier (LM) tests in a multiple regression model with multivariate Student-t errors are introduced when it is suspected that the regression coefficients may be restricted to a subspace. The bias and quadratic risks of the...

full text

Influence Measures in Ridge Linear Measurement Error Models

Usually the existence of influential observations is complicated by the presence of collinearity in linear measurement error models. However no method of influence measure available for the possible effect's that collinearity can have on the influence of an observation in such models. In this paper, a new type of ridge estimator based corrected likelihood function (REC) for linear measurement e...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 29  issue 1

pages  67- 78

publication date 2018-01-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023